If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+30x+9=0
a = 3; b = 30; c = +9;
Δ = b2-4ac
Δ = 302-4·3·9
Δ = 792
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{792}=\sqrt{36*22}=\sqrt{36}*\sqrt{22}=6\sqrt{22}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-6\sqrt{22}}{2*3}=\frac{-30-6\sqrt{22}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+6\sqrt{22}}{2*3}=\frac{-30+6\sqrt{22}}{6} $
| 14-4v=3-2v | | 13-1(x+1)=-3(4-x) | | 4n+37=10n+7 | | -1-2x=-7x+6x | | -(1+5x)=3(-2x+4) | | 11-2x=-7x+6x | | -3x+119=37 | | 2/3x+1/4x=10 | | -1-2x=7x+6x | | –7−8r=–8r−7 | | 36+3x=90 | | 4x-9+2x+3=180 | | x=-3=4 | | 2(1+2x)=2(6x+8) | | -112=8(7+b) | | 45-n=29 | | -6-p=-12 | | 4=r20-5 | | 7x-3x=80 | | 4(k+9)=128 | | 2x/3-1=x/2+2 | | 5y+34=14y+1 | | n/4+1=-1 | | 6x^2-13x-2=3 | | (x+27)=52 | | x/4=0.21 | | –2v+2v=0 | | 12y-15=6y+9 | | m/14-8=-7 | | 5+10p=10p | | 6y+3=-8 | | 3z-6z=-3z |